

Introducción a las Raíces, propiedades y Orden

Debo recordar

- Una raíz es una potencia de exponente fraccionario.
- $\sqrt[n]{a^m} = a^{\frac{m}{n}}$
- Donde "m" está elevando a "a" ("a" se está multiplicando por si misma "m" veces)
- Y "n" es la cantidad de veces que un mismo número divide a "a"
- Ejemplo:
- $\sqrt[3]{8^2} = 8^{\frac{2}{3}}$
- Donde "8" está elevando a "2" ("8" se está multiplicando por si mismo "2" veces)
- Y "3" es la cantidad de veces que un mismo número divide a "8", que en este caso sería "2"
- Observación: cuando no hay numero arriba de la raíz es porque hay un 2, ejemplo $\sqrt[2]{3}$ se escribe sin el 2, quedando así $\sqrt{3}$

Practica

- Transforma de raíz a potencia o viceversa, según sea el caso:
- 1) $\sqrt{3^7}$ =
- 2) $\sqrt[8]{11^7} =$
- 3) $15^{\frac{14}{25}} =$
- 4) $\sqrt[12]{14^{12}} =$
- 5) $1^{\frac{1}{5}} =$

Practica

• Transforma de raíz a potencia o viceversa, según sea el caso:

• 1)
$$\sqrt{3^7} = 3^{\frac{7}{2}}$$

• 2)
$$\sqrt[8]{11^7} = 11^{\frac{7}{8}}$$

• 3)
$$15^{\frac{14}{25}} = \sqrt[25]{15^{14}}$$

• 4)
$$\sqrt[12]{14^{12}} = 14^{\frac{12}{12}} = 14^1 = 14$$

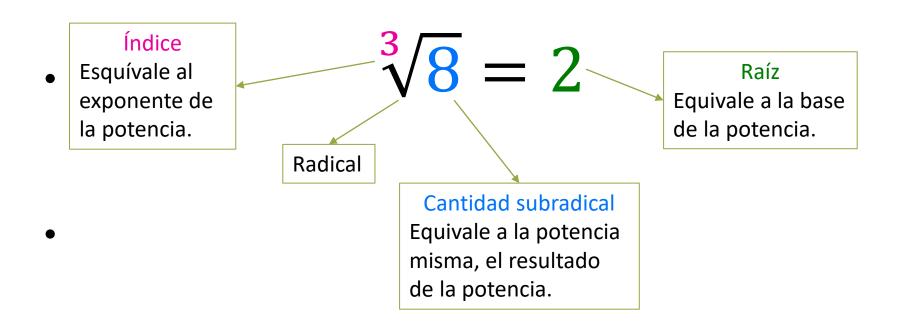
• 5)
$$1^{\frac{1}{5}} = \sqrt[5]{1^1} = \sqrt[5]{1} = 1$$

Raíz

• Una raíz busca la base de la potencia:

•
$$\sqrt[3]{8} = 2$$
 porque $2^3 = 8$ \implies $x^3 = 8$

• (a esta raíz se le llama "raíz cúbica" por ser de índice 3)


•
$$\sqrt[4]{81} = 3$$
 porque $3^4 = 81 \implies x^4 = 81$

• (a esta a esta raíz se le llama "raíz cuarta" por ser de índice 4)

Raíz

• Partes de una raíz:

Donde
$$2^3 = 8 \implies x^3 = 8$$

Raíz Cuadrada

- Nosotros trabajaremos con raíces cuadrada o sea de índice 2, pero recordemos que cuando el índice es 2 este no se escribe: $\sqrt[2]{3} \Rightarrow \sqrt{3}$
- Ejercicios, calcula las siguientes raíces, dejándolas como en el ejemplo:

$$\sqrt{25} = 25$$
, porque $5^2 = 25$

• 1)
$$\sqrt{9} =$$

• 2)
$$\sqrt{36} =$$

• 3)
$$\sqrt{16} =$$

• 4)
$$\sqrt{4} =$$

• 5)
$$\sqrt{1} =$$

• 6)
$$\sqrt{64} =$$

• 7)
$$\sqrt{81} =$$

• 8)
$$\sqrt{49} =$$

• 9)
$$\sqrt{121}$$
 =

• 10)
$$\sqrt{100} =$$

• 11)
$$\sqrt{400} =$$

Raíz Cuadrada

- Nosotros trabajaremos con raíces cuadrada o sea de índice 2, pero recordemos que cuando el índice es 2 este no se escribe: $\sqrt[2]{3} \Rightarrow \sqrt{3}$
- Ejercicios, calcula las siguientes raíces, dejándolas como en el ejemplo:

•
$$\sqrt{25} = 25$$
, porque $5^2 = 25$

- 1) $\sqrt{9} = 3$, porque $3^2 = 9$
- 2) $\sqrt{36} = 6$, porque $6^2 = 36$
- 3) $\sqrt{16} = 4$, porque $4^2 = 16$
- 4) $\sqrt{4} = 2$, porque $2^2 = 4$ (observación: $2^2 = 4$, porque $2 \cdot 2 = 4$ y no porque $2 \cdot 2 = 4$)
- 5) $\sqrt{1} = 1$, porque $1^2 = 1$
- 6) $\sqrt{64} = 8$, porque $8^2 = 64$
- 7) $\sqrt{81} = 9$, porque $9^2 = 81$
- 8) $\sqrt{49} = 7$, porque $7^2 = 49$
- 9) $\sqrt{121} = 11$, porque $11^2 = 121$
- 10) $\sqrt{100} = 10$, porque $10^2 = 10$
- 11) $\sqrt{400} = 20$, porque $20^2 = 20$