

Instrumento de Evaluación de Conocimientos Específicos y Pedagógicos 2022

FÍSICA

Educación Media Científico Humanista

DOMINIO 1: TIERRA Y UNIVERSO

1.1. Origen y evolución del Universo y del sistema solar

- Describir las principales teorías acerca del origen y evolución del Universo.
- Reconocer evidencias que sustentan la teoría del Big Bang.
- Identificar la abundancia relativa y el rol de la materia oscura y de la energía oscura en la estructura del Universo.
- Describir las principales características de las galaxias (tipos, estructura, componentes, etc.).
- Reconocer la situación de la Vía Láctea y del sistema solar en relación con las diversas estructuras y superestructuras del Universo.
- Describir el proceso de formación y evolución estelar (tipos, trayectoria en el diagrama Hertzsprung-Russell).
- Relacionar los procesos de fusión nuclear en el interior de una estrella con la energía que emite.
- Relacionar la nucleosíntesis con el Big Bang, la evolución estelar y las supernovas.
- Describir las principales características del Sol (masa, radio y composición química).
- Describir los planetas del sistema solar, considerando sus principales características (diámetros, masas, periodos de traslación y rotación, distancia al Sol, satélites, etc.).
- Describir la interacción gravitatoria, de acuerdo con la teoría de la gravitación universal de Newton.
- Describir el movimiento planetario a través de las leyes de Kepler.

1.2. Estructura y Dinámica de la Tierra

- Describir la estructura interna de la Tierra y sus características, basándose en los modelos composicional (geoquímico o estático) y mecánico (dinámico).
- Reconocer las principales características de los sismos (magnitud e intensidad, tipos de ondas que producen, hipocentro, epicentro, etc.).
- Contrastar el significado de las escalas sísmicas de Richter y Mercalli.

П

- Describir los procesos geológicos relacionados con la teoría tectónica de placas (deriva continental, expansión del fondo oceánico e interacción entre placas).
- Reconocer evidencias que sustentan la teoría de la deriva continental.
 Relacionar la teoría tectónica de placas con la formación de océanos, continentes o montañas.
- Relacionar la convección en el manto terrestre con la teoría tectónica de placas.
- Relacionar la teoría tectónica de placas con el origen de sismos y erupciones volcánicas.
- Relacionar las características de los eventos sísmicos con la producción de maremotos tectónicos (tsunamis).
- Relacionar cambios en la superficie del planeta con su propia dinámica geológica (sismos, erupciones volcánicas, etc.).
- Describir medidas preventivas para la vida de las personas ante movimientos telúricos y erupciones volcánicas.

DOMINIO 2: MECÁNICA CLÁSICA 2.1 Cinemática de la partícula

- Comparar descripciones del movimiento de un objeto desde diferentes marcos de referencia.
- Aplicar la adición de velocidades en movimientos unidimensionales cotidianos.
- Analizar movimientos cotidianos que pueden modelarse como rectilíneos (uniformes o con aceleración constante), en términos cinemáticos (posición, tiempo, distancia, desplazamiento, rapidez, velocidad, aceleración, entre otros).
- Interpretar representaciones gráficas de movimientos rectilíneos (uniformes o con aceleración constante).
- Describir, mediante ecuaciones, el movimiento rectilíneo (uniforme o con aceleración constante) de un objeto, a partir de sus condiciones iniciales.
- Describir, cuantitativamente, movimientos cotidianos que pueden modelarse como circunferenciales, en términos de sus variables características.
- Diferenciar entre magnitudes angulares y tangenciales del movimiento circunferencial.
- Interpretar representaciones de magnitudes vectoriales (cinemáticas), características del movimiento circunferencial (aceleración y velocidad).

2.2 Dinámica de la Partícula

- Relacionar la deformación de un cuerpo elástico con la magnitud de la fuerza aplicada (ley de Hooke).
- Reconocer interacciones cotidianas, identificando las fuerzas correspondientes (peso, normal, roce cinético y estático, entre otras).
- Explicar (cualitativa o cuantitativamente) la situación de equilibrio (o no equilibrio) de un objeto o de un sistema de objetos, de acuerdo con los principios de Newton.
- Explicar los efectos de una fuerza neta que actúa sobre un objeto, en situaciones cotidianas, de acuerdo con los principios de Newton.
- Describir la situación de equilibrio (o no equilibrio) de un objeto o de un sistema de objetos, mediante diagramas de cuerpo libre.

П

- Explicar los cambios en el movimiento de un objeto o en un sistema de objetos, basándose en los conceptos de fuerza, impulso y cantidad de movimiento lineal.
- Aplicar la ley de conservación de la cantidad de movimiento lineal, en situaciones cotidianas.
- Aplicar la ley de conservación de la energía mecánica, en situaciones cotidianas.
 Describir diversos movimientos, a partir de las leyes de conservación de la cantidad de movimiento lineal y de la energía mecánica (por ejemplo: propulsión de cohetes, carros sobre una montaña rusa, etc.).
- Relacionar la acción de una fuerza central con la conservación de la cantidad de momento angular.
- Relacionar aceleración centrípeta y aceleración tangencial con las fuerzas correspondientes.
- Relacionar aceleración centrípeta con el cambio de la velocidad tangencial en un movimiento circunferencial uniforme.
- Reconocer la acción centrípeta de diversos tipos de fuerza (gravitacional, tensión de una cuerda, roce estático, magnética), en algunas situaciones cotidianas.
- Explicar el movimiento de un objeto o de un sistema de objetos, basándose en los conceptos de trabajo, fuerza, potencia y energía mecánica.
- Aplicar las nociones de trabajo, energía y potencia mecánica para describir situaciones cotidianas.

2.3 Dinámica del sólido rígido

- Explicar la rotación de cuerpos rígidos (giro de ruedas, apertura y cierre de puertas, entre otros), basándose en los conceptos de torque, momento de inercia, energía cinética de rotación y momento angular.
- Aplicar la ley de conservación del momento angular para describir la rotación de cuerpos rígidos, en situaciones cotidianas.
- Relacionar el momento de inercia de un objeto con su masa y con la forma en cómo esta se distribuye alrededor del eje de rotación.
- Interpretar representaciones de magnitudes vectoriales (dinámicas), características en la rotación de cuerpos rígidos (torque, momento angular).
- Relacionar el momento angular con el momento lineal.

2.4 Dinámica de medios continuos

- Identificar las características físicas de un fluido (movimiento y cohesión molecular, densidad, compresibilidad o incompresibilidad, viscosidad).
- Aplicar la ecuación fundamental de la hidrostática (en agua y otros fluidos).
- Aplicar el principio de Arquímedes en situaciones cotidianas.
- Aplicar el principio de Pascal en situaciones cotidianas.
- Explicar el funcionamiento de máquinas hidráulicas (prensa, frenos, entre otras) y la flotabilidad de diversas naves (barco, submarino, globo aerostático, entre otras), basándose en principios hidrostáticos.
- Aplicar el concepto de caudal y la ecuación de continuidad, en situaciones cotidianas.
- Aplicar el teorema de Bernoulli en situaciones cotidianas.
- Explicar el funcionamiento de artefactos diversos (alerón en autos de carrera, atomizador, alas de avión, entre otros), basándose en principios hidrodinámicos.

- Relacionar el concepto de presión con la fuerza aplicada sobre una superficie y el área en que la fuerza actúa.
- Explicar situaciones experimentales o cotidianas a partir del efecto de la presión atmosférica.
- Explicar fenómenos cotidianos basándose en los conceptos de: capilaridad, tensión superficial.
- Contrastar las fuerzas intermoleculares de cohesión y de adherencia.
- Relacionar los conceptos de tensión superficial, capilaridad, cohesión y adherencia.
 - Relacionar las leyes de conservación de masa y energía con la ecuación de continuidad y el teorema de Bernoulli, respectivamente.
- Contrastar flujos laminares con flujos turbulentos.
- Relacionar el roce interno de un fluido con la viscosidad.
- Describir un movimiento armónico simple.
- Caracterizar sistemas que oscilan (oscilaciones forzadas, movimiento de péndulos, entre otros).
- Relacionar las propiedades de las ondas mecánicas con las características de instrumentos musicales.
- Describir ondas mecánicas, de acuerdo con sus principales características (amplitud, frecuencia, velocidad de propagación, período, fase, longitud de onda).
- Explicar fenómenos relacionados con la interacción del sonido y la materia (reflexión, absorción, transmisión, refracción, difracción, interferencia, efecto Doppler), sobre la base de conceptos físicos, leyes y relaciones matemáticas elementales.
- Explicar fenómenos acústicos (eco, resonancia, efecto Doppler, reverberación, entre otros) y aplicaciones tecnológicas (ecógrafo, sonar, estetoscopio, entre otras), utilizando el modelo ondulatorio.
- Reconocer las principales características del sonido (intensidad, tono, timbre y rapidez).
- Relacionar la vibración de objetos materiales (cuerdas vocales, parlantes, instrumentos musicales) con la emisión de sonido.
- Describir el funcionamiento del oído humano (capacidad, limitaciones, entre otros) y de la tecnología correctiva para problemas de audición en humanos (audífonos).
- Aplicar la relación entre longitud de onda, frecuencia y velocidad de propagación de una onda mecánica.

DOMINIO 3: ELECTROMAGNETISMO Y ÓPTICA

3.1 Electrostática

- Aplicar los conceptos de campo electrostático, fuerza electrostática, energía potencial eléctrica y potencial electrostático, en diversas configuraciones de cargas eléctricas.
- Aplicar métodos o procedimientos de electrización de materiales conductores y no conductores.
- Analizar la interacción entre cargas eléctricas, de acuerdo con la ley de Coulomb, considerando el carácter vectorial de las fuerzas.

- Aplicar la noción de intensidad de campo eléctrico y de diferencia de potencial a diversas distribuciones de carga eléctrica (puntual, esfera conductora).
- Reconocer las líneas de campo eléctrico para diversas distribuciones de carga eléctrica (puntual aislada, pares de cargas, hilos, superficies planas y esféricas).
- Relacionar los conceptos de carga, campo y potencial eléctrico con los rayos en las tormentas eléctricas.

3.2 Corriente eléctrica

- Describir circuitos eléctricos (en serie y en paralelo) concretos, basándose en las características y funciones de sus componentes (conexión a tierra, fusibles, interruptores, enchufes, aparatos de consumo, conductores, entre otros).
 Aplicar la relación entre intensidad de corriente, potencia eléctrica y voltaje, en ejemplos prácticos de consumo doméstico de energía eléctrica.
- Relacionar la resistencia eléctrica de un conductor con sus características geométricas.
- Representar gráficamente la ley de Ohm.
- Aplicar la ley de Ohm a circuitos en serie y en paralelo.
- Relacionar el efecto Joule (o ley de Joule) con los conceptos de potencia eléctrica y energía disipada, en contextos cotidianos.

3.3 Fenómenos ópticos y electromagnéticos

- Explicar algunas propiedades magnéticas de la materia (superconductividad, ferromagnetismo, paramagnetismo y diamagnetismo).
- Explicar el funcionamiento de electroimanes, generadores, motores y transformadores eléctricos, basándose en las interacciones electromagnéticas que ocurren en ellos.
- Describir el movimiento de partículas neutras y de cargas eléctricas, bajo la influencia de un campo electromagnético, en términos de fuerzas que actúan y trayectoria de las partículas.
- Aplicar las nociones de intensidad del campo magnético y de líneas de campo magnético en el caso de diversos conductores (recto, espira, solenoide) de corriente eléctrica.
- Analizar la interacción magnética de diversos conductores de corriente eléctrica, entre sí, o con un campo magnético externo (conductores rectos paralelos, galvanómetro, etc.).
- Aplicar las leyes de Faraday y Lenz en diversas configuraciones de conductores y bobinas (considerando movimiento relativo, voltaje inducido, flujo magnético, inducción mutua, autoinducción, entre otros conceptos).
- Analizar el funcionamiento de diversos dispositivos ópticos (formación de imágenes con espejos, lentes, binoculares, telescopios de reflexión y refracción, microscopio, entre otros), con base en los modelos corpuscular y ondulatorio de la luz.
- Describir el funcionamiento del ojo humano (capacidad, limitaciones, entre otros) y de la tecnología correctiva para problemas de visión en humanos (lentes).
- Relacionar la difracción y la transmisión de la luz con la formación de colores.
- Comparar modelos acerca de la naturaleza y características de la luz (rayo, partícula, onda electromagnética, fotón).

- Explicar fenómenos relacionados con la interacción de la luz y la materia (reflexión, absorción, transmisión, refracción, difracción, interferencia, efecto Doppler), con base en los modelos corpuscular y ondulatorio de la luz.
- Describir la forma en que se generan y propagan las ondas electromagnéticas.
- Relacionar la propagación de ondas electromagnéticas con la transmisión de energía.
- Comparar los distintos tipos de ondas electromagnéticas que presenta el espectro electromagnético, de acuerdo con sus principales características (frecuencia, velocidad de propagación, longitud de onda, entre otras).
- Analizar el funcionamiento de circuitos básicos para transmisión y recepción de ondas electromagnéticas (incluyendo capacitores, inductores y diodos).
- Explicar el funcionamiento de algunos dispositivos tecnológicos que operan con ondas electromagnéticas (radio, televisión, telefonía, hornos de microondas, láser, radar, entre otros).

DOMINIO 4: NÚCLEO ATÓMICO

4.1 Núcleo Atómico

- Comparar las características de las cuatro interacciones fundamentales de la naturaleza, y de las fuerzas y partículas mediadoras elementales correspondientes.
- Describir modelos de núcleo atómico (de gota líquida, de capas).
- Explicar la estabilidad del núcleo atómico y de la materia, basándose en las características de las interacciones nucleares.
- Comparar los órdenes de magnitud de las masas de las partículas subatómicas (electrón, protón y neutrón).
- Relacionar los isótopos de un elemento químico con su estructura nuclear.
- Describir las emisiones alfa, beta y gamma de un núcleo atómico.
- Interpretar, a partir de diversas fuentes (datos, gráficos, entre otras), la vida media de un material radiactivo.
- Explicar fenómenos magnéticos, a partir de los conceptos de spin y de momento nuclear magnético del núcleo atómico.
- Relacionar la energía de enlace con la fuerza nuclear y con los procesos de fisión y fusión nuclear.

DOMINIO 5: RAZONAMIENTO CIENTÍFICO

5.1 Habilidades de razonamiento científico

- Distinguir entre variables dependientes, independientes y controladas en un diseño experimental.
- Distinguir un procedimiento o diseño experimental adecuado para comprobar una hipótesis o responder una determinada pregunta de investigación.
- Interpretar, inferir o sacar conclusiones a partir de los datos y resultados obtenidos en una investigación o diseño experimental.
- Elaborar explicaciones, conclusiones o argumentos científicos válidos, a partir del análisis de información, investigaciones y/o de un diseño experimental.
- Identificar modificaciones para mejorar un diseño experimental, a partir del propósito, los resultados o las conclusiones obtenidas.

DOMINIO 6: ENSEÑANZA-APRENDIZAJE EN LA ASIGNATURA DE FÍSICA

6.1 Estrategias de enseñanza para la asignatura de Física

- Determinar estrategias metodológicas y/o actividades para abordar objetivos o habilidades propios de la asignatura de Física.
- Disponer de diversas (variadas) formas de representar y formular los contenidos, de modo de hacerlos comprensibles para todos los estudiantes, por ejemplo: analogías, ilustraciones, explicaciones, metáforas, ejemplos, contraejemplos, demostraciones.
- Responder con lenguaje comprensivo y con precisión conceptual preguntas y dudas que surgen en los estudiantes en torno a los contenidos.

- Identificar, en situaciones de aula, decisiones e intervenciones del docente que favorecen el aprendizaje en la asignatura de Física durante el desarrollo de la clase.
- Seleccionar recursos didácticos apropiados para abordar diferentes objetivos de aprendizaje de la asignatura de Física.
- Diseñar estrategias o actividades de aprendizaje en función de los énfasis curriculares de la asignatura de Física.
- Distinguir estrategias para enfrentar las dificultades que se presentan en el proceso de aprendizaje de los estudiantes, de modo que estas puedan ser superadas.

6.2 Aprendizaje en la asignatura de Física

- Identificar los conocimientos previos requeridos para abordar los distintos aprendizajes de la asignatura de Física.
- Inferir la dificultad en el proceso de aprendizaje de uno o varios estudiantes, a partir de respuestas erradas o muestras del desempeño que denotan confusiones, omisiones o comprensión equívoca de ciertos contenidos, como los preconceptos.
- Identificar los indicadores de evaluación y desempeños que dan cuenta de los distintos objetivos de aprendizaje de la asignatura de Física.

6.3 Evaluación de los aprendizajes en la asignatura de Física

- Identificar los indicadores de evaluación y desempeños que dan cuenta de los distintos objetivos de aprendizaje de la asignatura de Física.
- Seleccionar actividades y determinar el uso de instrumentos de evaluación para evaluar los aprendizajes de la asignatura de Física.
- Caracterizar prácticas e interacciones pedagógicas que contribuyen a retroalimentar formativamente el aprendizaje de los estudiantes ante muestras de su desempeño.